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1. Introduction 

Almost all companies in the sugar industry nowadays use models to help make decisions. The 

models might be technical, economic or both, and can range in complexity from a simple 

cash flow analysis to a full mass & energy balance for a refinery. What the vast majority have 

in common is that they are deterministic models, where the input data is fixed and static, and 

therefore so are the outputs. 

By using models with fixed inputs, what we are saying is that we know with 100% 

confidence that our assumptions are correct; for example, that the sugar price will be 

$500/tonne, or the feed sugar colour will be 1000 IU. In reality, however, there is virtually 

nothing that we can know or predict with 100% confidence.  

This paper will show how we can build this uncertainty into our modelling by using Monte 

Carlo simulation to convert deterministic into stochastic models. Firstly, a simplified fictional 

example will be described to demonstrate the methods. Then, three real-world examples will 

be given: (1) estimating the operating cost for a new refinery; (2) comparing potential 

refining processes; and (3) identifying areas for optimisation in an existing refinery. 

In each example, the paper will show how Monte Carlo simulation, together with holistic 

modelling, can show the range of potential outcomes and the likelihood of each occurring, the 

key factors driving the variations, and how this can help with decision making. Finally, the 

paper will also touch on real-world examples of the expensive consequences of not taking 

uncertainty into account – of assuming that we know everything. 

2. Simplified demonstration of Monte Carlo simulation 

Monte Carlo simulation is a computerised mathematical technique that can give the decision-

maker a range of possible outcomes and the probabilities that they will occur, for any choice 

of action. The technique was first used by scientists working on the Manhattan Project, and is 

used today in areas including finance, project management, energy, manufacturing, 

engineering, research and development, insurance, oil & gas, transportation, and the 

environment. The method can be described as comprising the following basic steps: 

1. Replace any input parameter which is subject to inherent uncertainty with a range of 

values, represented by a probability distribution.  

2. Recalculate the model over and over again, each time using a different set of random 

inputs as sampled from the probability distributions.  
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3. Aggregate the results from each recalculation and generate probability distributions 

for each output value. 

In this paper the technique was carried out using @RISK software
1
, which can be used on 

any Excel spreadsheet. 

The method can be illustrated by the following simplified example. Suppose we are 

contemplating building or investing in a new autonomous sugar refinery. To help make our 

decision, we’ve built a very simple economic model, which calculates (a) the annual cash 

flow based on the profit margin and the production rate; (b) the annualised cost of capital
2
, 

based on the CAPEX, discount rate and economic life; and from the two we get the net 

annual profit. 

There are only six inputs, and we estimate an operating cost of $65/t, a refining margin 

(difference in price between feed and product sugar) of $110/t (the average world white 

premium in 2013), a CAPEX of $200m, a production rate of 1,000,000 tonnes per year, a 

discount rate on capital of 10% and an economic life of 15 years.  

Using these assumptions, the results from our simple model are shown in Table 1: 

Table 1: Simple model inputs & outputs (single-point estimate) 

Inputs  

CAPEX $200,000,000  

Operating costs (/tonne sugar) $65  

White premium (/tonne sugar) $110  

Production rate (tonnes/year) 1,000,000 

Discount rate 10% 

Economic life (years) 15 

Outputs  

Cash flow (annual) $45,000,000  

Cost of capital (annual) -$26,295,000  

Annual Profit $18,705,000  

 

Now it's decision time. Do we proceed beyond the initial stage of the project? The annual 

profit looks healthy, so we might decide to press ahead. Or, we might acknowledge that there 

is uncertainty in our assumptions, and decide to test the model using what-if scenarios. One 

way of doing this is via a three-point estimate. Here we estimate worst case, expected and 

best case values for the assumptions instead of the previously used single values.  

As is common in most models, we were probably conservative with the single-point 

estimates. For the operating cost, we might actually expect a value of $60/t, with $55 and $80 

as the best and worst case. The CAPEX might include 10% contingency and a confidence 

                                                           
1
 http://www.palisade.com/risk/  

2
 The annualised cost of capital is calculate by applying a Capital Recovery Factor, which uses an interest rate 

(i) and project life (n) to determine the rate at which earnings could reasonably be expected if the same funds 
were invested over a length of time The formula is: 
$ (annual) = $ (total) x CRF, where CRF = {i(1 + i)^n} / {[(1 + i)^n]-1}. 

http://www.palisade.com/risk/
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level of +-30%. The actual production rate might vary by +5%, -10%, and discount rate on 

capital between 8 and 12%.  For the white premium, we might decide to take the minimum, 

average and maximum values for the 5-year-average world white premium over the last 25 

years: $80/t, $101/t and $111/t.  

Using these values, we can run the model and obtain the results for the three cases, as shown 

in Table 2. 

Table 2: Simple model inputs & outputs (single-point estimate) 

Inputs Worst Expected Best 

CAPEX $234,000,000  $180,000,000  $126,000,000  

Operating costs (/tonne sugar) $80  $60  $55  

White premium (/tonne sugar) $80  $101  $111  

Production rate (tonnes/year) 900,000 1,000,000 1,050,000 

Discount rate 12% 10% 8% 

Economic life (years) 15 15 15 

Outputs Worst Expected Best 

Cash flow (annual) -$70,000  $40,757,000  $58,502,000  

Cost of capital (annual) -$34,357,000  -$23,665,000  -$14,721,000  

Annual Profit -$34,427,000  $17,092,000  $43,781,000  

 

What do the results tell us? We can see that the expected case is similar to our original 

estimate, that the best case looks very good, but also that the worst case does not look good, 

and that we could lose a lot of money. The problem here is that while we’re aware that there 

is a significant potential downside, we don’t actually know how likely it is. We know the 

consequences of the risk, but not the likelihood. We’re not really any better equipped to take 

our decision.  

This is where Monte Carlo simulation can help. Firstly, we take our three-point estimates 

from before and convert them into probability distributions. There are various probability 

distributions we could use (common distributions include normal, lognormal, uniform and 

triangular) but in this scenario we will use the PERT distribution for each input. The PERT 

distribution was developed to model expert estimates, and requires three values for its 

definition: minimum, most likely and maximum. Its shape is similar to a triangular 

distribution, but with a greater likelihood of values occurring in the region around the most 

likely value. We will use our three-point estimates from earlier to define the distributions.  

As an example, Figure 1 below shows the distribution for operating costs. The vertical axis 

represents probability, so this distribution indicates that there is a greater probability of values 

occurring around $60/t. The vertical bars highlight the 90% confidence band: in this case, the 

distribution implies that we have 90% confidence that the operating costs will be between 

$56/t and $70/t. 
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Figure 1: Probability distribution for operating costs ($/tonne) 

For the white premium, we can actually use historical data to create the distribution. Figure 2 

below shows the five-year-average world white premium for the last 20 years, based on 

published data.
3
 

 
Figure 2: Five-year-average world white premium, 1993-2013. 

We can take this same raw data and display it in Figure 3 in the form of a frequency 

distribution, shown in blue. We can then fit a probability distribution to the data, and the 

triangular distribution shown in red is the best fit. We can then use this distribution in our 

model; effectively what we are doing is using past variations as a guide to future variability.  

                                                           
3
 http://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx  

http://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx
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Figure 3: Frequency (blue) and fitted probability (red) distributions for world white premium 

Having defined all our model inputs as probability distributions, we can now recalculate our 

model hundreds or thousands of times, and each time the input data will vary randomly 

according to the distributions we have defined. We can simulate thousands of what-if 

scenarios to build up a fuller picture of the likely outcomes. Figure 4 shows the outcomes, in 

terms of annual profit, of 10,000 model simulations. The result from each simulation is 

plotted on a frequency distribution, giving a visual representation of the potential variation in 

results. The average annual profit from the 10,000 simulations is around $13m/y, 

significantly lower than the $18.7m/y and $17m/y previously estimated using our cruder 

single-point and three-point estimates. As before we can see the potential for both significant 

upside and downside, but now we can see the estimated likelihood of this occurring: 5% 

probability of profit exceeding $27m, and a 10% probability of making a loss.  
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Figure 4: Distribution of Annual Profit output from 10,000 model simulations 

How does this help us make our decision? Well, we can see our average expected profit is 

significantly lower than we thought previously, but more importantly, there is a significant 

(10%) risk of making a loss, so we might decide to cancel the project on this basis.  

Alternatively, we could investigate what is driving this risk and see if we can mitigate it. 

Figure 5 shows a sensitivity analysis chart for our 10,000 simulations. This ranks each of the 

variable inputs in terms of the effect of their variability on the annual profit, and we can 

clearly see that variability in the white premium is our biggest risk. Now we know this, and 

given that we’ve seen the project could potentially be lucrative, we might want to explore 

ways of reducing our exposure to these variations. 

 
Figure 5: Sensitivity analysis chart showing relative impact of input variability 

Let’s say that for a fee of $2 per tonne of sugar, which we can add to the operating costs, we 

can hedge to impose an artificial floor of $95/t to the white premium, so that we are limiting 
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our exposure to the potential downside. We modify our model accordingly, and Figure 6 

shows the results from 10,000 simulations. 

 
Figure 6: Distribution of Annual Profit output after white premium hedging 

We can see that we have slightly reduced our expected average result, and the potential 

upside, but more importantly, we have reduced the risk of an annual loss to less than 5%. 

Depending on our appetite for risk, this may be sufficient for us to decide to proceed with the 

project.  

This is a fictional, and very simplified, example of how Monte Carlo simulation can be used 

to help in decision-making. In reality, nobody is (hopefully!) going to decide on a $200m 

investment based on such a simple model with only 6 inputs. In the next section, we will 

explore three real examples of how these methods can be used to help in decision-making. 

3. Examples of real applications in the sugar industry 

We will now look at three real examples: (i) estimating operating costs for a new refinery; (ii) 

comparing potential refining processes; and (iii) identifying areas for optimisation in an 

existing refinery. 

3.1. Estimating operating costs for a new refinery 

In the model used for the simplified demonstration in section 2 there were only 6 inputs, one 

of which was the operating costs. In reality, operating cost is a complex variable subject to 

variability in many other parameters, for example: energy cost; sugar price; feed colour; 

process efficiencies; chemical prices; waste disposal costs; and so on. In reality, when 

estimating operating costs for a new refinery, a holistic model should be built including the 

processes, utilities and associated economics, based on mass & energy balances, with the 

operating costs estimated from the results. Such a model will have many inputs, and is 

obviously much more complex than the simple model shown in section 2. Nevertheless, the 
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model can be built in a way that allows the inputs to be changed from static to variable, and 

defined as probability distributions, just like the simple model.  

Figure 7 shows the distribution of operating costs (OPEX) resulting from 5000 simulations of 

a complex model for a specific refinery project, and Figure 8 shows the sensitivity analysis 

chart. 

 
Figure 7: Distribution of operating costs from 5,000 simulations of new refinery model 

 
Figure 8: Sensitivity analysis chart for operating costs for a new refinery 

What the simulation shows is that instead of a single fixed operating cost, there is a range of 

potential values between $35 to $57/t. It shows that the average, or expected, cost is $44.5/t, 

and it also shows that we can be around 90% confident that the costs will be between $39 and 
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$50/t. It also shows clearly that the biggest risk to the operating costs is the gas price. Overall, 

this means that we can (a) give more confidence in the economic viability of the refinery, and 

(b) highlight the importance of securing a supply of natural gas at a reasonable price.    

3.2. Comparing potential refining processes 

For new (and some existing) refineries, the choice of refining processes is not fixed and 

automatic. Probably the most common and significant decisions lie in choosing which 

processes to use for clarification (or primary decolourisation) and for secondary 

decolourisation. For clarification, the choice is usually between phosphatation and 

carbonatation, and for secondary decolourisation, the choice is usually between ion exchange 

and granular (or in some cases powdered) activated carbon, or a combination of each. 

Although the choice of process is not solely a financial one, for a sensible and informed 

decision to be made it is important to estimate the operating costs for each option. Models of 

each process can be built to calculate the operating costs. The inputs to the model can vary 

according to the scenario; for example, the steam or electricity cost, or the waste disposal 

options and cost, can vary from refinery to refinery. These potential variations can be 

explored via Monte Carlo simulation, to build a picture of the likely benefits of one process 

over another, and the key drivers behind those benefits.  

For example, Figure 9 shows the distribution of results from a comparison model of 

phosphatation and carbonatation. The key result from the model is the operating cost 

differential: the operating cost for carbonatation minus the cost for phosphatation. This 

shows, interestingly, that in approximately half of the 10,000 simulations the results favoured 

carbonatation and in the other half, phosphatation, i.e. the average operating cost differential 

is around zero. It should be noted here that this does not necessarily mean that half of all real-

life scenarios favour carbonatation over phosphatation, and vice versa. The variability of 

inputs to the model was set to explore the drivers behind the choice of process, not to 

accurately reflect the actual variability in scenarios worldwide. However, it does indicate that 

purely on the basis of operating costs, the choice between carbonatation and phosphatation is 

not a straightforward one.  
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Figure 9: Distribution of operating cost differential from 10,000 simulations of a 

phosphatation vs carbonatation model 

 

Figure 10 shows the sensitivity analysis chart for the 10,000 simulations. Bars on the right-

hand-side of the axis indicate that an increase in the parameter favours phosphatation, and 

vice versa. This shows that the biggest drivers between the two processes are: (1) the type of 

filtration process required after phosphatation; (2) the available destination for calcium 

carbonate cake; (3) the maximum liquor Brix to the post-carbonatation filters; (4) the 

electricity price; and (5) the number of effects in downstream evaporation. 
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Figure 10: Sensitivity analysis chart for operating cost differential between phosphatation and 

carbonatation 

In this example, Monte Carlo simulation has shown us the potential difference in operating 

costs between the two processes. It has also shown the scenario- and location-specific factors 

that are most likely to impact the difference in operating costs. This helps us to understand 

the decision between the processes better, and which areas to focus on to make each process 

more cost-effective. 

3.3. Identifying areas for optimisation in an existing refinery 

When analysing an existing refinery, just as for the new refinery example in section 3.1, we 

can build a holistic model of the refinery, based on mass and energy balances. We can then 

use that model to explore various what-if scenarios and identify areas with scope for 

optimisation. Here, again, Monte Carlo simulation can be usefully applied.  

For example, we can explore how energy usage can be reduced by changing day-to-day 

operating parameters rather than by capital projects. Model inputs related to these parameters 

are set to variable, with distributions defined according to practically feasible ranges. Figure 

11 below shows the results of 1,000 simulations of the model, in terms of overall energy 

usage (expressed in mBtu per cwt raw sugar). This gives an indication of the potential saving 

achievable by varying operating parameters. The sensitivity analysis chart in Figure 12 then 

highlights which parameters have the biggest effect on energy usage. Bars on the right-hand-

side mean that an increase in the parameter will cause an increase in energy usage, and vice 

versa. 
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Figure 11: Distribution of energy usage (mBtu/cwt feed sugar) for an existing refinery model. 

 
Figure 12: Sensitivity analysis chart for energy usage in an existing refinery. 

Here, the simulation has helped us to understand the relative impact of altering process 

parameters and highlight which specific areas of operation to focus on to achieve our goal of 

reducing energy consumption. 

4. Where Monte Carlo simulation should have been applied? 

In the sugar industry, like in any other walk of life, not all decisions turn out to be successful. 

Often this is because the decision was based on a set of assumptions which didn’t apply in 

reality. Here are some examples of real-life situations were Monte Carlo simulation might 
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have highlighted the impact of those assumptions and helped to avert or mitigate the failure 

or problem, or at least highlighted the potential range of outcomes. 

1. Feed quality. More than one sugar refinery has suffered due to a worse than expected 

feed colour, ash, or purity. In one particular refinery lacking crystallisation, this 

resulted in higher than expected operating costs, and higher effluents than the 

treatment plant was designed for, leading to problems maintaining production. The 

financial cost was significant. Monte Carlo simulation would have highlighted the 

sensitivity to feed quality and perhaps led to a stricter feed specification, averting the 

problem altogether. 

2. Market demand. Overconfidence in market demand for products is not uncommon, 

and has led to problems with process plant turndown, lower than expected revenues, 

and in some cases has led to whole (or parts of) refineries being shut down 

temporarily or permanently. Again, Monte Carlo simulation would have highlighted 

the sensitivity to this assumption and shown a range of potential financial outcomes.  

3. Energy price. Energy prices are notoriously unstable, but even so, investments are 

sometimes made on the basis of a fixed energy price assumption. There are examples 

including ethanol plants being mothballed for years due to lower than predicted oil 

prices, and alternative-fuel boilers being financially unviable due to an unexpected 

spike in fuel prices, all involving investments of millions of dollars. 

4. Chemical price. Chemical prices too can be highly volatile. One plant was forced to 

shut down for several months due to a spike in the price of the humble chemical 

caustic soda. Again, Monte Carlo simulation would have highlighted this perhaps-

unexpected sensitivity. 

5. Process performance. There are numerous examples of refineries suffering worse than 

expected financial returns due to overconfidence in the performance of a process or 

processes, such as decolourisation, yields, Brix levels, reliability, throughput or 

thermal efficiency. Monte Carlo simulation could have been used to show the 

expected range of outcomes based on a range of potential process performance 

parameters, rather than just the expected values.  

Of course, saying that Monte Carlo simulation would have mitigated all these problems is 

speculation – but hopefully this paper has shown that it is not unreasonable speculation.  

5. Summary and conclusions 

The purpose of this paper was to give a description of the Monte Carlo simulation technique 

and a flavour of how it can be usefully applied in the sugar industry. The technique is not 

perfect and it has to be applied intelligently, just like any modelling or simulation. But when 

applied properly it can shine more light onto the complexities behind decision-making. 

Nowadays we have access to more and more data, with greater levels of detail, but we still 

cannot predict the future – and we should beware the illusion of accuracy. 

As human beings, we are modelling all the time, reducing the complexity of the world to a 

simplified and comprehensible version of it in order to make decisions efficiently. For 
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example: in planning my journey to airport for this conference, my brain built a simplified 

model of the London traffic and transport network, based on its experience. The inputs to the 

model included the flight time, time of day, weather, probability of accidents, delayed trains, 

etc. The output was my departure time. In this model, my brain took into account the inherent 

uncertainty in the assumptions, considered the range of potential outcomes, the consequences 

of missing the plane (high!), and made a balanced decision on that basis.  

The bottom line is that reality is uncertain, and if human nature tries to account for this 

uncertainty, so models should too. It is still people that make the decisions, but having a 

better understanding of the probable outcomes should help those people to make better 

decisions. 


