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Abstract 
 

The carbon footprint (GHG emissions) of sugar is of increasing 

interest to sugar users and consumers. This study considers the 

potential variability on a global basis of the carbon footprint of cane 

sugar, and investigates the key drivers affecting this variability.  

 

A mathematical model was built to represent the production of sugar 

from field to market. Key input values were replaced by ranges to 

reflect the variability and uncertainty associated with the diversity of 

sugar production scenarios worldwide. Monte Carlo simulation was 

carried out to simulate the effect of these variations on the model 

outputs, which were assessed against the Bonsucro method (with 

modifications and additions) for estimating GHG emissions. 

 

The carbon footprint of field-to-gate raw sugar ranged between 217 

and 809 g CO2eq per kg sugar in 90% of simulations. The biggest 

drivers were the country of origin, agricultural methods, power 

production/export and process energy efficiency. Production of 

plantation white sugar and transport to a local market added another 

100-150 g CO2eq/kg, split between transport and processing emissions.   

 

The carbon footprint of field-to-market factory-refined sugar ranged 

between 329 and 1121 g CO2eq/kg. The increase from raw sugar was 

mainly due to increased fossil fuel usage, and the biggest driver was 

process energy efficiency. The carbon footprint associated with 

shipping raw sugar from port, refining at a destination refinery, and 

transporting to market ranged between 465 and 660 g CO2eq/kg. The 

biggest driver was refinery energy efficiency. Finally, the carbon 

footprint of field-to-market destination-refined sugar ranged between 

621 and 1459 g CO2eq/kg in 90% of simulations, of which the distance 

from factory to port was an additional significant driver. 

 

The potential variability in cane sugar carbon footprint has been 

shown to be large, depending on where and how it is produced. 

However, by focussing on areas such as irrigation, agricultural 

chemicals, cane yields, power generation and export, process energy 

efficiency and cane burning, it is realistic to achieve a negative carbon 

footprint for field-to-market refined sugar: a net emissions credit of 
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260 g CO2eq/kg was simulated, improving to 565 g CO2eq/kg with trash 

recovery and to 1470 g CO2eq/kg with biomass gasification. 

 

Introduction 
 

 The GHG emissions resulting from production of sugar in the context of global 

warming are of increasing interest and importance to consumers. This impact is most 

appropriately measured via the estimation of the overall greenhouse gas (GHG) emissions 

resulting from sugar production, or its “carbon footprint”. A growing number of 

manufacturers and retailers are estimating and publicly stating the carbon footprint associated 

with various products, including beet and cane sugar, while consumer awareness is likely to 

create pressure on more cane sugar manufacturers, refiners and retailers to publish similar 

information. This paper has the following aims: 

 

1. To estimate the potential global variability in carbon footprint of cane sugar. 

2. To identify the key drivers affecting this variability. 

3. To explore the potential for manipulating these drivers to minimise carbon footprint. 

 

Five scenarios were investigated in this study: 

 

Scenario 1: Field-to-factory-gate raw sugar 

Scenario 2: Field-to-market plantation white sugar 

Scenario 3: Field-to-market refined sugar (refinery annexed to factory) 

Scenario 4: Raw sugar port to refined sugar market (i.e. raw sugar transport and refining) 

Scenario 5: Field-to-market refined sugar (refinery separate from factory) 

 

Following these investigations, three further scenarios were modelled to investigate the 

potential to achieve low-emissions refined sugar: 

 

Scenario 6: Low emissions refined sugar 

Scenario 7: Very low emissions refined sugar 

Scenario 8: Extremely low emissions refined sugar 

 

Method of Analysis 
 

 Modelling 

 

Estimation of the carbon footprint involved firstly creating a model of the system 

under analysis. This was carried out using SugarCaneModel, a technical and economic 

modelling tool for the cane sugar industry. SugarCaneModel builds mass and energy balances 

for the processes and utilities involved, i.e. agriculture, raw sugar processing, ethanol 

production, sugar refining, steam/power production, and transport.  

 

A key feature of SugarCaneModel is that it allows the modelling of uncertainty via 

Monte Carlo simulation methods. Monte Carlo simulation can be described simplistically as 

incorporating three steps: 

 

1. Replace any model input parameter which is subject to inherent uncertainty with a 

range of values represented by a probability distribution. 

2. Recalculate the model over and over again, each time using a different set of random 

inputs as sampled from the probability distributions. 
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3. Aggregate the results from each recalculation and generate probability distributions 

for each output value. 

 

Monte Carlo simulation provides two key benefits. Firstly, and most importantly, it 

provides a range of outcomes from which the probability that they will occur can be 

calculated. This contrasts with traditional static modelling, in which fixed input values give a 

single fixed output value. In a world dominated by variability and uncertainty, this fixed 

output reflects only one of a myriad of possible outcomes. Secondly, it provides transparency 

for the key input parameters driving the variability of the outputs, via sensitivity analysis. 

These characteristics of Monte Carlo simulation are ideally suited to this study, which is 

aiming to analyse variability across a diverse range of scenarios, and to identify the key 

drivers.  

 

In this study, key model inputs (listed in tables below) were designated as being 

variable and replaced by probability distributions. Three different distribution types were 

used: discrete, PERT, and uniform. These distributions are described briefly below. 

 

Discrete distributions 

 

Discrete distributions are simple: there are a finite number (typically two or three) of 

values that the input can take and the probability of each value occurring is defined. For 

example, in the model, the molasses produced from a sugar factory is either processed into 

ethanol or sold directly. The probability of the molasses being processed into ethanol was set 

at 30%. Therefore, for every 1000 simulations of the model, roughly 300 will involve a 

molasses distillery and, in the other 700, the molasses will be sold directly.  

 

Uniform distributions 

 

 Uniform distributions are also simple, and are defined by two values: a minimum and 

a maximum. In a uniform distribution, there is an equal probability of any value occurring 

between the minimum and maximum. For example, in the model, the boiler steam pressure 

varies between 20 and 100 bar, with equal probability of any value in that range occurring. 

 

PERT distributions 

 

 The most common distribution used in this study was the PERT distribution. PERT 

distributions are defined by three values: minimum, maximum, and most likely. For example, 

for irrigated fields, the water application was allowed to vary between 0 and 4000 mm, with a 

most likely value of 500. In a PERT distribution, there is a higher probability of values around 

the most likely value being selected, and a lower probability of values around the minimum 

and maximum. This is illustrated in Figure 1, which shows the actual probability distribution 

used in the model. The vertical axis represents probability. 
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Fig. 1 – PERT distribution example: irrigation water usage (mm) 

 

Method of assessing GHG emissions 

 

 The GHG emissions (carbon footprint) for various production systems were estimated 

by taking the outputs from SugarCaneModel and applying the method published and applied 

by Bonsucro (2011) to accredit sugar producers under the Bonsucro Certification System, the 

first global metric standard for sugarcane. The method (details can be obtained from the 

Bonsucro website) is a field-to-gate analysis which accounts for direct and indirect energy use 

and GHG emissions in the following areas: 

 Agriculture (irrigation, chemical use, cane burning
1
, transport fuel use, field residues) 

 Fossil fuels burnt 

 Electricity imports/exports
2
 

 Process chemicals used 

 Allocation to co-products (e.g. molasses, ethanol) 

 

In addition to the methodology and data published by Bonsucro, the following 

assumptions and data were used for GHG emissions estimation: 

 

1. Transport of products was included (where applicable), with road transport assumed 

and diesel used as fuel. 

2. Sea transport of raw sugar for refining was included (where applicable), with 

emissions factors from Defra (2011)
3
. 

3. Emissions factors from electricity generation were taken from IEA (2011), with 2007-

2009 averages used. IEA data were used as the range of countries included is wider 

than the range given in the Bonsucro standard. For destination refineries, the Bonsucro 

                                                 
1
 CH4 and N2O emissions. 

2
 Export of electricity achieves a credit in terms of energy and emissions saved, according to the displacement of 

energy in that country. The Bonsucro method uses the grid average emissions to calculate the credit. There is an 

argument that this is conservative as in reality electricity exports are likely to replace marginal energy 

production, which is likely to be from fossil fuels. However, at present the Bonsucro method follows the EU 

Renewable Energy Directive in this respect. 
3
 5.7 gCO2eq per tonne km for a 35 000-59 999 dwt bulk carrier, 55% loaded. 
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average (i.e. non-country-specific) emissions factor for electricity generation (150 g 

CO2eq/MJ) was used. 

4. Cane stalks left on the field after harvest contain 0.1% nitrogen, as stated after 12 

months growth by Bakker (1999). 

5. Cane trash (tops and leaves) left on the fields after harvest contains 0.5% nitrogen. 

This is an approximation from data from Pankhurst (2005) and Bakker (1999).  

6. Filter mud returned to the fields contains 5% nitrogen on a dry basis, as stated by 

Smith-Baez (2008).  

7. The concentration of CaCO3 in agricultural lime was assumed to be 65%. 

8. Waste-water treatment and raw water intake was included, with emission factors from 

Defra (2011).
4
 

9. It is assumed that in none of the scenarios modelled was non-agricultural land 

converted to agricultural use after 1 January 2008.  

 

Scenario 1: Field-to-factory-gate raw sugar  

 

 The first scenario modelled was raw sugar production. The model incorporated cane 

growing, harvest, transport to factory and production into raw sugar, molasses and/or ethanol. 

The GHG emissions were calculated on a cradle-to-gate basis, i.e. excluding any transport of 

raw sugar from the factory. 3000 model simulations were run, and the basis for each was 

20  000 hectares of land. The same input dataset was used for each simulation, with selected 

inputs allowed to vary randomly from simulation to simulation according to defined 

probability distributions. The full input dataset is too lengthy to be reproduced here but is 

available on request. The variable inputs are listed in Tables 1 and 2. Table 1 contains the 

discrete variable inputs, while Table 2 contains the continuous variable inputs (for uniform or 

PERT distributions). 

 

Table 1 – Variable (discrete) model inputs: field-to-factory-gate raw sugar 

 
Parameter Value/Range 

Country of origin 
5 

% of simulations (non-Brazil) with irrigated fields 80% 

% of simulations (Brazil) with irrigated fields 10% 

% of simulations with irrigation via diesel pumps (i.e. not electric) 70% 

% of simulations with cane trash recovered and used for additional fuel 2% 

% of simulations with coal as supplementary fuel (remainder is fuel oil) 50% 

% of simulations where power exported to grid (if available)
6
 30% 

% of simulations with some electrification of mill/preparation drives 40% 

% of simulations with filter mud re-used on fields
7
 80% 

% of simulations with a distillery
8
 30% 

% of simulations with distillery vinasse processed in digestor for biogas production 
(remainder is applied to cane fields) 

10% 

 

 

 

                                                 
4
 0.70 gCO2eq per kg wastewater and 0.34 gCO2eq per kg raw water intake. 

5
 The country of origin varies according to the relative % of harvested area amongst the top 25 sugarcane 

producers according to 2010 data from FAO. For example, in 2010, Brazil harvested ~9 million ha, around 42% 

of the total from the top 25 producers. Therefore, in each simulation, there is a 42% probability that Brazil is the 

country of origin. 
6
 If trash recovered and used for fuel, then power is automatically exported 

7
 Otherwise, filter mud is disposed as a solid waste to landfill 

8
 If a distillery is included, then 100% of molasses is processed in the distillery into ethanol 
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Table 2 – Variable (continuous) model inputs: field-to-factory-gate raw sugar 

 
Parameter Value/Range Distribution 

Cane yield (t/ha) ±25%
9
 PERT 

% of cane fields planted mechanically 20% (0-100%) PERT 

Litres of tractor fuel used per ha planted mechanically 35 (25-50) PERT 

Irrigation water usage (mm/y) – if fields irrigated 500 (0-4000) PERT 

Irrigation pumping head (m) 30 (20-50) PERT 

Irrigation diesel pump thermal efficiency 31% (26-35%) PERT 

Amount of nitrogen required as fertiliser (kg/ha)
10

 75 (45-300) PERT 

Amount of P2O5 required as fertiliser (kg/ha) 90 (45-180) PERT 

Amount of K2O required as fertiliser (kg/ha) 100 (50-200) PERT 

Amount of lime applied in the fields (kg/ha) 1000 (500-2000) PERT 

Amount of herbicide applied in the fields (kg/ha)
11

 2.2 (1.1-3.3) PERT 

Pol % in cane stalk 14% (11-15%) PERT 

Fibre % in cane stalk 13.3% (11-15%) PERT 

Purity (sucrose) of cane stalk 90% (85-92.5%) PERT 

% of cane burnt prior to harvest 65% (0-100%) PERT 

% of trash recovered if trash recovery operated
12

 50% (30-80%) PERT 

% of fields mechanically harvested 40% (0-100%) PERT 

Average distance from field to mill (km) 10 (1-20) PERT 

Mill sucrose extraction 95% (88-98%) PERT 

Mill imbibition water on fibre 200% (100-300%) PERT 

Bagasse moisture 50% (45-55%) PERT 

% of drives electrified in factories with electrification 75% (25-100%) PERT 

Energy usage in mill drives (kWh/te fibre) 83 (70-131) PERT 

Energy usage in cane preparation drives (kWh/te fibre) 67 (36-107) PERT 

Process energy efficiency 
13

 PERT 

Boiling house process efficiency 
14

 PERT 

Boiler steam pressure 20-100 bar Uniform 

Power generation turbine overall efficiency 70% (50-80%) PERT 

% of clear juice sent to distillery (if included) 50% (0-100%) PERT 

Ethanol yield in distillery fermentation (% of stoichiometric) 89% (88%-92%) PERT 

 

Correlations were included in the model to link the variability of the fertiliser input 

parameters (N, P2O5 and K2O required) and irrigation water usage with the variability in cane 

yield, i.e. if the irrigation water usage or fertiliser parameters varied upwards, the cane yield 

was likely to also vary upwards.  Similar correlations were included to link imbibition water 

usage, mill extraction and bagasse moisture. 

 

 

 

 

                                                 
9
 The cane yield varies with the country of origin, according to the average yields for 2010 from FAO data (e.g. 

Brazil average in 2010 was 70.4 t/ha). This value is then allowed to vary ±25%.  
10

 If the filter mud and/or distillery vinasse is returned to the cane fields, their nutrients count against the required 

fertiliser components, i.e. the amount of fresh fertiliser required is reduced.  
11

 Herbicide is only applied if the trash blanket remaining on the fields after harvest is less than 7.5 t/ha 
12

 Trash is only recovered from fields mechanically harvested 
13

 The variability of process energy efficiency is applied in the model via an Energy Efficiency Factor. This 

factor was set at 5 and allowed to vary between 1 and 10. These values roughly correspond with a factory 

process steam-on-cane of 45% (varying between 33% and 65%), with the other inputs at average values. 
14

 The variability of boiler house process efficiency is applied in the model via a Process Efficiency Factor. This 

factor was set at 2 and allowed to vary between 0.5 and 4. These values roughly correspond with a Boiler House 

Recovery (BHR) of 89% (varying between 84% and 92.5%), with the other inputs at average values. 
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Results 

 

Figure 2 below shows the distribution of the results from the 3000 model simulations. 

The horizontal axis is the g CO2eq/kg sugar, and the vertical axis represents frequency, i.e. 

there is a greater frequency of results around the 300-500 g region than lower or higher 

values. The chart shows that the mean carbon footprint was 441 g CO2eq/kg sugar, and the 

median was 390. It shows that 90% of the simulations had carbon footprints between 217 and 

809 g CO2eq/kg sugar. A small number of simulations (0.5%) had negative carbon footprints, 

with 1% having values above 1200 g CO2eq/kg sugar.   

 

 
Fig. 2 – Carbon footprint variability: field-to-factory-gate raw sugar 

 

The breakdown of the carbon footprint by category is illustrated by the table in 

Appendix 1, which shows the mean results for each of the scenarios. This shows that the 

majority of emissions result from the agricultural phase, with smaller amounts from cane 

transport (5-10%) and processing (15-20%). The total emissions due to cane production (up to 

the mill gate) are 630 g CO2eq/kg sugar. The emissions due to electricity are shown as 

negative due to the average power export. The appropriate share of total emissions is allocated 

to co-products either by market value (for molasses) or by energy content (for ethanol). Of the 

agricultural emissions, the biggest contributor is nitrogen for fertilisation, followed by 

irrigation, cane burning and lime application. Of the processing emissions, the biggest 

contributors are caustic soda usage and bagasse burning.  

  

Comparison with other published carbon footprint estimates 

 

 Comparing carbon footprint estimates from different sources is difficult due to the 

variability in methods used. Klenk et al. (2012) recently carried out a literature review of 

published carbon footprint estimations for cane sugar, only including estimates where the 

methodology was stated. Four estimates for raw sugar production (cradle-to-gate) were 

included, with values ranging between 210 and 550 g CO2eq/kg sugar. One of those estimates 

was by Rein (2010), who developed the Bonsucro accounting method. Rein’s estimate, 307 g 

CO2eq/kg sugar, was based on a “typical” sugar mill, producing sugar and molasses and 
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exporting some power. As a method of validation, the model used in this paper was tested 

against the inputs used by Rein, with similar results. Rein (2011) later stated that values for 

raw sugar could be expected to be between 200 and 500 g CO2eq/kg sugar, and more recently 

Rein (2012) cited various estimates between 203 and 800 g CO2eq/kg sugar.  

 

Figure 2 shows similarity to these previous published estimates. The 90% band is 

similar to the 203-800 range reported by Rein (2012). The mean and median are higher than 

Rein’s 2010 estimate of 307 g CO2eq/kg sugar. In fact, three quarters of the simulations 

resulted in values above 307 g CO2eq/kg sugar. Around two thirds of the simulations resulted 

in values within the 200-500 range suggested by Rein (2011) and reported by Klenk et al. 

(2012).   

 

Renouf et al. (2010) assessed the carbon footprint of Australian sugarcane production 

based on data from the state of Queensland, with Monte Carlo simulation to account for 

variability. In 95% of cases, the carbon footprint was between 66.4 and 114.5 kg CO2 per 

tonne cane delivered to mill. At an assumed sugar yield (kg raw sugar per kg cane) of 12.5%, 

this equates to 531 to 916 g CO2eq/kg sugar. The mean emissions from Appendix 1 are 630 g 

CO2eq/kg sugar, i.e. within that range.  

 

Sensitivity analysis 

 

Figure 3 shows the top-ranked variable inputs in terms of the effect their variability 

had on the overall carbon footprint, i.e. it shows which inputs the carbon footprint was most 

sensitive to. The horizontal bars give an indication of the magnitude of the changes in carbon 

footprint caused by variations in each input. For example, variations in the cane yield caused 

the carbon footprint to fluctuate over a range of around 160 g CO2eq/kg sugar. It should be 

noted that the sensitivity is a result of the importance of the parameter and the variability 

assigned to it (see Table 2).  

 

 
Fig. 3 – Sensitivity analysis: field-to-factory-gate raw sugar 
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The key drivers as shown in Figure 3 are in the areas of agriculture (cane yield, 

irrigation and fertilisation), power production/export and process energy efficiency. The top-

ranked input is the country of origin, which causes a number of impacts in the model: (a) it 

affects the likely cane yield, (b) it affects the likelihood of irrigation (in the case of Brazil), 

and (c) it affects the GHG emissions credit allocated to power export (see the Bonsucro 

standard for more detail). The presence of trash recovery efficiency is interesting, as trash 

recovery was only carried out in 2% of simulations. This indicates the potential importance of 

trash recovery, which is explored further in scenarios 7 and 8.  

 

Scenario 2: Field-to-market plantation white sugar 

 

 The second scenario modelled was the production of plantation white sugar, including 

product transport (sugar, molasses and ethanol) to market. Plantation white sugar is here 

defined as white sugar produced in a sugar factory (as distinct from ‘refined’ sugar) and 

intended for direct consumption in local markets. The model was generally the same as 

scenario 1, except that juice and syrup sulfitation were included, the boiling scheme was 

modified, and transport of products was included. The additional variable inputs were as 

shown in Table 3 below.  

 

Table 3 – Additional variable model inputs: field-to-market plantation white sugar 

 
Parameter Value/Range Distribution 

Juice sulfur usage (ppm to cane equivalent) 500 (300-600) PERT 

Syrup sulfur usage (ppm to cane equivalent) 100 (50-200) PERT 

Average road distance to market (km): sugar 100 (50-300) PERT 

Road distance to market (km): molasses 100 (10-500) PERT 

Road distance to market (km): ethanol 100 (10-500) PERT 

Road freight fuel efficiency (tonne.km per litre) 21 (16-26) PERT 

 

Results 

 

The distribution of the results from the 3000 model simulations generally mimicked 

that of the raw sugar scenario in Figure 2, except that the carbon footprint is around 100-150 g 

CO2eq/kg sugar higher. The mean, median, minimum, maximum and 5% and 95% percentiles 

from the 3000 model simulations are shown in Appendix 2, with the equivalent values for 

each of scenarios 1 to 5. As before, Appendix 1 shows the breakdown of the carbon footprint 

by category. This shows that the biggest contributor to the increase is product transport 

(50%), followed by increased chemical usage (30%) and increased net energy usage (20%). 

 

Scenario 3: Field-to-market refined sugar (refinery annexed to factory) 

 

 The third scenario modelled was the production of refined sugar in a refinery annexed 

to a factory, including product transport (sugar, molasses and ethanol) to market. The model 

was generally the same as scenario 1 except that all raw sugar produced was processed into 

refined sugar and transport of products was included (similar to scenario 2). The refinery 

processes were assumed to include melting; phosphatation clarification; filtration, powdered 

activated carbon (PAC) or ion exchange (IER) with brine recovery; crystallisation; and 

drying. The heat energy to the refinery was provided by bleeding factory evaporator vapour 

where available. The additional variable inputs are shown in Table 4.  
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Table 4 – Additional variable model inputs (refinery annexed to factory) 

 
Parameter Value/Range Distribution 

Sugar colour to refinery (IU)
 15

 1000 (800-1200) PERT 

Decolourisation by PAC or IER 50%/50% Discrete 

IER colour removal per cycle (BV.IU)
 16

 22 500 (20 000-30 000) PERT 

PAC dose rate (% to sugar throughput) 0.1% (0.05-0.2%) PERT 

 

 Results 

 

Figure 4 shows the distribution of the results from the 3000 model simulations, and 

Appendix 2 compares the results with the other scenarios 1-5.  

 

 
Fig. 4 – Carbon footprint variability: field-to-market refined (refinery annexed to factory) 

 

Compared to the plantation white scenario, the carbon footprint is around 50 (between 

0 and 160) CO2eq/kg sugar higher. Appendix 1 shows that the mean increase in carbon 

footprint is mostly due to an increase in fossil fuel usage, mitigated by a reduction in chemical 

usage. 

 

Sensitivity analysis 

 

 Figure 5 shows the sensitivity analysis chart. The top-ranked input is the heat loss 

factor, i.e. the process energy efficiency of the factory and refinery. This is a logical result: for 

raw sugar production alone, a factory can often afford to be energy inefficient and still be self-

sufficient in steam from bagasse; whereas the addition of an annexed refinery makes it more 

important to focus on factory energy efficiency.  

 

                                                 
15

 ICUMSA colour units 
16

 Bed volumes processed multiplied by average colour removal (IU) 
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Fig. 5 – Sensitivity analysis: field-to-market refined sugar (refinery annexed to factory) 

 

Scenario 4: Raw sugar port to refined market (i.e. raw shipping, refining and transport) 

 

 The fourth scenario modelled was raw sugar refining in a destination refinery, 

including shipping by sea of raw sugar to the refinery, and product transport (refined sugar 

and molasses) to market. The starting point for each simulation was 1 million tonnes of raw 

sugar at a port in the country of origin. Variable inputs are listed in Tables 5 and 6 below.  

 

Table 5 – Variable (Discrete) Model Inputs: Destination Refinery 

 
Parameter Value/Range 

% of simulations processing VHP quality sugar (remainder use affination) 50% 

% of simulations with phosphatation (remainder have carbonatation) 60% 

% of simulations with bone char/GAC
17

/IER for decolourisation 20%/30%/50% 

% of simulations including export of surplus power to grid 20% 

% of simulations using coal/oil/gas as fuel 30%/10%/60% 

 

Table 6 – Variable (Continuous) Model Inputs: Destination Refinery 

 
Parameter Value/Range Distribution 

Raw (non-VHP) sugar colour to refinery (IU) 3000 (1500-5000) PERT 

VHP sugar colour to refinery (IU) 1000 (500-1200) PERT 

Refinery energy efficiency 
18 

PERT 

Refinery process efficiency 
19 

PERT 

Power generation turbine overall efficiency 70% (50-80%) PERT 

                                                 
17

 Granular activated carbon. 
18

 The variability of process energy efficiency is applied in the model via an Energy Efficiency Factor. This 

factor was set at 1 and allowed to vary between 0 and 5. These values roughly correspond with an exhaust steam 

usage of 1.09 t/t sugar (varying between 0.9 and 1.45).  
19

 The variability of process efficiency is applied in the model via a Sugar Loss Factor. This factor was set at 1 

and allowed to vary between 0.5 and 4. These values roughly correspond with an overall sucrose yield of 98% 

(varying between 99% and 96%).  
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Carbonatation lime dosing (ppm CaO to DS
20

 in feed) 6000 (4500-9000) PERT 

Bone char burn rate (kg per kg DS in feed) 10% (5-15%) PERT 

GAC burn rate (kg per kg DS in feed)
21

 0.8% (0.4-1.4%) PERT 

IER colour removal per cycle (BV.IU) 22 500 (20 000-30 000) PERT 

Raw sugar sea shipping distance to refinery (km) 8000 (2000-20000) PERT 

Average road distance to market (km): refined sugar 100 (50-300) PERT 

Average road distance to market (km): molasses 100 (10-500) PERT 

Road freight fuel efficiency (tonne.km per litre) 21 (16-26) PERT 

 

 Results 

 

Figure 6 shows the distribution of the results from the 3000 model simulations, and 

Appendix 2 compares the results with the other scenarios 1-5. Appendix 1 shows that around 

75% of the carbon footprint is due to fossil fuel usage, with the remainder split between 

product transport, raw sugar shipping and process chemicals. 

 

 
Fig. 6 – Carbon footprint variability: raw sugar port to refined market 

 

Comparison with other published estimates 

 

Rein (2011) estimated a value of 417 g CO2eq/kg sugar for refining alone (i.e. 

excluding transport). Rein also reported values for raw sugar transport to a destination 

refinery of 48 (Thailand to Japan) and 140 kg CO2eq/t sugar (Mauritius to Europe), although 

it is not clear if these include overland transport from factory to port. These values are of the 

same order as the results shown above and in Appendix 1.  

 

Sensitivity analysis 

 

 Figure 7 shows the sensitivity analysis chart. The top-ranked input is the heat loss 

factor, i.e. the refinery energy efficiency. This is logical as the majority of emissions are due 

to fossil fuel usage. Other key drivers are transport distances and efficiencies, power 

                                                 
20

 Dry solids 
21

 kg of GAC sent to kiln for regeneration per kg of sugar (dry solids) processed 
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generation and process configuration. Of the options included, the configuration with the 

lowest carbon footprint is VHP sugar refined using phosphatation and either IER or GAC. 

 

 
Fig. 7 – Sensitivity analysis: raw sugar port to refined market 

 

Scenario 5: Field-to-market refined sugar (refinery separate from factory)  

  

 The fifth scenario modelled included raw sugar production (as scenario 1), transport to 

a refinery, refining and product transport (as scenario 4). The refinery could be either within 

the country of origin or in the country of destination. The starting point for each simulation, as 

in scenario 1, was 20 000 ha of sugarcane production. The additional or modified variable 

inputs are: 

 

Table 7 – Additional variable model inputs (scenario 5) 

 
Parameter Value/Range Distribution 

Refinery located with road distance of factory 15% Discrete 

Road distance from factory to refinery (km) 50 (0-200) PERT 

Road distance from factory to port (km) 400 (10-1000) PERT 

 

Results 

 

Figure 8 shows the distribution of the results from the 3000 model simulations, and 

Appendix 2 compares the results with the other scenarios 1-5. Appendix 1 shows that around 

half of the emissions are due to agriculture, with around 40% from processing (mainly fossil 

fuel usage in refining) and the remainder in transport. Road transport contributes around 

double the emissions of sea transport. 
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Fig. 8 – Carbon footprint variability: field-to-market refined (refinery separate from factory)  

 

Comparison with other published estimates 

 

The literature survey in Klenk et al. (2012) included two estimates for raw sugar shipped and 

refined in another country: 630 and 534 g CO2eq/kg sugar. Rein (2012) reported an estimate of 

570 g CO2eq/kg sugar in the US. Tate & Lyle (2009) reported a carbon footprint of 380 g 

CO2eq/kg retail sugar (field-to-use), while Florida Crystals (2008) reported carbon-neutral 

refined sugar (i.e. carbon footprint of zero). These values are all at the lower end of the 

distribution in Figure 8. 

 

Sensitivity analysis 

 

Figure 9 shows the sensitivity analysis chart. The highest-ranked input is the road 

distance from factory to port (as this was defined in Table 7, it is highly variable). The other 

inputs are dominated by agriculture, power production and energy efficiency. 
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Fig. 9 – Sensitivity analysis: field-to-market refined sugar (refinery separate from factory)  

 

Scenario 6: Low emissions refined sugar  

 

 Scenario 6 was a single static simulation in which the key drivers as identified above 

were manipulated to achieve low-emissions refined sugar. The inputs manipulated are listed 

in Table 8. The other inputs remained at their “most likely” values (i.e. without ranges) as in 

scenario 3. 

 

Table 8 – Inputs manipulated: low-emissions refined sugar 

 
Parameter Value 

Country of origin India
22

 

Cane yield (t/ha) 70.1
23

 

Irrigation water usage (mm/year) 500 

Electric irrigation pumps 100% 

Amount of nitrogen required as fertiliser (kg/ha) 75 

Amount of lime required on fields (kg/ha) 500 

Filter mud returned to fields? Yes 

Distillery attached? No 

Refinery annexed to factory (i.e. not separate)? Yes 

Process steam-on-cane (approx.) 40% 

% of cane burnt 0% 

Surplus power exported to grid? Yes 

Boiler pressure (bar) 100 

Power generation turbine overall efficiency 80% 

Mill drives electrified 100% 

 

                                                 
22

 India is selected because it has a high emissions factor for average electricity production (264 g CO2/MJ, 

compared to 21 g CO2/MJ for Brazil, for example), therefore increasing the credit for power exports (see 

footnote 2).  
23

 Average for India. 

  



 

 

 

Page 16 of 20 
 

The results are shown in Appendix 1. The total carbon footprint is -262 g CO2eq/kg 

sugar. The negative carbon footprint is due to the large credit allocated to power export (>700 

g CO2eq/kg sugar). Agricultural nitrogen and irrigation are the biggest contributors to 

emissions. 

 

Scenario 7: Very low emissions refined sugar  

 

 Scenario 7 was the same as scenario 6, except that 100% of the land was mechanically 

harvested and 50% of cane trash was recovered and burnt in the boiler (constituting 20% of 

the total boiler fuel). The results are shown in Appendix 1. The total carbon footprint is -565 g 

CO2eq/kg sugar. The power export credit is now over 1000 g CO2eq/kg sugar (the actual power 

export is around 1.1 MWh/tonne sugar).  

 

Scenario 8: Extremely low emissions refined sugar  

 

 Scenario 8 was the same as scenario 7, except that bagasse and trash were processed 

via biomass gasification with power produced via gas turbines. The results are shown in 

Appendix 1. The total carbon footprint is -1469 g CO2eq/kg sugar. The power export credit is 

now almost 2700 g CO2eq/kg sugar (the actual power export is around 2.8 MWh/tonne sugar). 

The emissions due to chemical manufacture and transport increase by almost 700 g CO2eq/kg 

due to gasifier chemical usage. 

 

Summary of results 

 

 The results from the various scenarios are summarised below. These results and 

conclusions are based on the assumptions listed in the paper. The nature of variable modelling 

carried two benefits in this regard: (a) by expressing inputs and outputs as ranges, the results 

are not so reliant on the accuracy of data for any single input; and (b) the sensitivity analysis 

highlights which assumptions are most crucial to the final results.  

 

1. The carbon footprint of raw sugar worldwide varied in 90% of simulations between 

217 and 809 g CO2eq/kg sugar, with a mean of 441 g CO2eq/kg. 

2. The biggest drivers of variability in raw sugar carbon footprint were the country of 

origin, agricultural methods, power production/export and process energy efficiency. 

3. Production of plantation white sugar and transport to a local market added around 100-

150 g CO2eq/kg to the carbon footprint, due to product transport (50%), increased 

chemical usage (30%), and increased energy usage (20%). 

4. The global carbon footprint of refined sugar (refinery annexed to factory) varied in 

90% of simulations between 329 and 1121 g CO2eq/kg sugar, with a mean of 598 g 

CO2eq/kg. The increase from raw sugar was mostly due to fossil fuel usage, and the 

biggest driver of variability was process energy efficiency 

5. The carbon footprint associated with shipping raw sugar from port, refining at a 

destination refinery, and transporting to market varied in 90% of simulations between 

465 and 660 g CO2eq/kg sugar, with a mean of 558 g CO2eq/kg. The biggest driver of 

variability was process energy efficiency. 

6. The global carbon footprint of refined sugar (refinery separate to factory) varied in 

90% of simulations between 621 and 1459 g CO2eq/kg sugar, with a mean of 1022 g 

CO2eq/kg. The key drivers were similar to the previous case, with the addition of the 

distance from factory to port. 



 

 

 

Page 17 of 20 
 

7. By manipulating the key drivers, a refined sugar carbon footprint of -260 g CO2eq/kg 

sugar can be achieved. This increases to -565 g CO2eq/kg if trash recovery is carried 

out and -1470 g CO2eq/kg if biomass gasification is adopted. 

 

Conclusions 

 

The potential variation in the carbon footprint of raw and refined cane sugar is large, 

depending on where and how it is produced. This poses a problem, particularly for refined 

sugar manufacturers and consumers, in that stating a specific product emissions level is 

difficult if not impossible. It also presents an opportunity, particularly in raw sugar 

manufacture and annexed refineries, in that the key drivers can be manipulated to achieve a 

low-emissions product. Plantation white and factory-refined sugar have a significant 

advantage over destination-refined white sugar. By focussing on the areas of irrigation, 

nitrogen and lime application, cane yields, power generation and export, process energy 

efficiency and cane burning, refined cane sugar can realistically achieve a negative carbon 

footprint, i.e. a net emissions credit of 260 g CO2eq/kg sugar. This could increase to 565 g 

CO2eq/kg if trash recovery is implemented, and to 1470 g CO2eq/kg with biomass gasification. 

Florida Crystals have already shown in 2009 that a carbon neutral refined sugar can be 

produced (due to emissions credits from power generation and export). 

 

The carbon footprint values stated in this paper are based on the Bonsucro method of 

analysis with assumptions, modifications and additions as stated in the paper. One critical 

assumption is that no non-agricultural land was converted to agricultural use after 1 January 

2008. This effectively eliminates any impacts from direct or indirect land use change. It is 

important to understand the methodology and its boundaries when comparing these results 

with other published estimates.   
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Appendix 1: Results from all scenarios (mean values from 3000 simulations) 

 

SUMMARY

Field-to-Gate 

Raw Sugar

Field-to-

Market 

Plantation 

White

Field-to-

Market White-

End Refined

Raw 

Shipping, Port-

Refining & 

Transport

Field-to-

Market 

Autonomous 

Refined

Low 

Emissions 

Refined Sugar

Very Low 

Emissions 

Refined Sugar

Extremely 

Low 

Emissions 

Refined Sugar

Agriculture 585 612 619 0 594 266 276 276

Transportation of cane 45 47 48 0 46 34 45 45

Feedstocks (e.g. raw sugar) 0 0 0 0 0 0 0 0

Processing (excluding electricity) 121 192 211 459 551 72 76 734

Electricity import/export -61 -55 -58 -8 -70 -706 -1,060 -2,696

Local transport of products 0 76 80 56 122 51 51 51

Total (ex sea transport) 690 873 900 507 1,239 -283 -612 -1,590

Allocation to bagasse 0 0 0 0 0 0 0 0

Allocation to molasses 33 43 34 2 42 -22 -47 -121

Allocation to ethanol 216 280 267 0 218 0 0 0

Allocation to sugar 441 550 598 506 980 -262 -565 -1,469

Sea transport of sugar 0 0 0 53 45 0 0 0

Total 690 873 900 560 1,285 -283 -612 -1,590

Total for sugar 441 550 598 558 1,025 -262 -565 -1,469

DETAIL

Agricultural chems manufacture & application

Nitrogen 88 86 89 0 93 14 14 14

K2O 15 15 16 0 14 6 6 6

P2O5 9 9 9 0 10 9 9 9

CaCO3 68 70 72 0 65 19 19 19

Herbicide 11 11 11 0 11 0 8 8

Insecticide 1 1 1 0 1 1 1 1

Total 191 191 198 0 193 49 56 56

N2O from cane/trash/filter mud/vinasse

Cane stallk residue 6 6 6 0 6 5 5 5

Cane trash residue 32 33 34 0 30 45 23 23

Filter cake 63 67 67 0 62 56 56 56

Vinasse 29 32 32 0 26 0 0 0

Total 131 138 138 0 125 107 84 84

Agricultural fuel & energy

Diesel fuel for transport 32 33 33 0 32 21 46 46

Diesel fuel for irrigation 123 139 138 0 130 0 0 0

Electricity used in irrigation 31 30 29 0 33 90 90 90

Total 185 202 201 0 195 110 136 136

Cane burnt

CH4 produced in cane burning 59 61 62 0 60 0 0 0

N2O produced in cane burning 19 20 20 0 20 0 0 0

Total 78 81 83 0 80 0 0 0

Cane transport

Diesel fuel for cane transport 45 47 48 0 46 34 45 45

Total 45 47 48 0 46 34 45 45

Bagasse burnt

CH4 produced in bagasse burning 25 26 26 0 24 19 19 0

N2O produced in bagasse burning 1 1 1 0 1 1 1 0

Total 26 26 27 0 25 19 19 0

Fossil fuels

Fossil fuels burnt in boiler 9 35 76 411 421 0 0 0

Gas burnt in kilns 0 0 0 8 0 0 0 0

Electricity imported/exported -61 -55 -58 -8 -70 -706 -1,060 -2,696

Total -51 -20 17 410 351 -706 -1,060 -2,696

Process chemicals

Lime (CaO) 1 3 2 0 1 1 1 1

Caustic 68 71 74 14 90 33 36 386

Sulphuric acid 2 2 2 0 2 0 0 25

Miscellaneous 11 50 27 25 25 17 17 319

Total 82 126 103 40 118 50 54 731

Water/waste

Wastewater treatment 3 3 3 0 3 2 2 2

Raw water intake 2 2 2 0 3 1 1 1

Total 5 5 5 1 6 3 3 3

Road transport of products

Diesel fuel for granulated sugar transport 0 45 55 55 93 36 36 36

Diesel fuel for liquid sugar transport 0 0 0 0 0 0 0 0

Diesel fuel for molasses transport 0 14 13 1 17 15 15 15

Diesel fuel for ethanol transport 0 16 12 0 12 0 0 0

Total 0 76 80 56 122 51 51 51

Sea transport of products

Raw sugar from factory to refinery 0 0 0 53 45 0 0 0

Total 0 0 0 53 45 0 0 0
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Appendix 2: Results comparison (Scenarios 1-5) 

 
No Scenario Min 5% Median Mean 95% Max 

1 Field-to-factory-gate raw sugar -121 217 390 441 809 2251 

2 Field-to-market plantation white sugar -35 327 490 550 962 2161 

3 Field-to-market refined sugar (refinery annexed to factory) -126 329 529 598 1121 2114 

4 Raw sugar port to refined market (i.e. raw shipping, refining & transport to market) 395 465 555 558 660 1227 

5 Field-to-market refined sugar (refinery separate from factory) -114 621 995 1022 1459 2885 

 

All values are g CO2 per kg sugar 

 


